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Abstract: 

The National Map provides geospatial data that support various uses such as resource management, disaster response, 

and science investigations. To properly support these needs, data themes of the National Map must be regularly updated 

and spatially integrated as the features on the ground change because of environmental or man-made events. The 

elevation theme of the National Map is managed through the 3D Elevation Program (3DEP), which is currently (2019) 

coordinating collection of high resolution (HR) elevation data for the United States over an eight-year period 

(Sugarbaker et al. 2014). Through this program, lidar point-cloud data are being collected for the conterminous United 

States, Hawaii, and U.S. territories, with coarser resolution interferometric synthetic aperture radar (ifsar) data being 

collected for the remote areas of Alaska. HR digital elevation models (DEMs) can be generated at 1 and 3 meter 

resolution from the lidar point-cloud data and are also furnished by 3DEP.  

This research develops automated methods to update the hydrography and transportation themes of the National Map in 

a manner that integrates with the HR elevation and image layers. Surface water drainage networks can be extracted 

from a HR DEM using flow-direction and flow-accumulation modelling, but results of these methods vary depending 

on environmental conditions and the existence of anthropogenic features that may affect the accuracy of the elevation 

model, such as vegetative cover, roads, bridges, and other urban structures. Hydrologic conditioning or enforcement of 

a HR DEM overcome some of these issues and improve flow modelling for drainage network extraction through 

techniques such as filtering (Passalaqua et al. 2010), filling sinks (Tarboton 1997), cutting channels through 

embankments at culvert and bridge locations (Poppenga et al. 2012), or burning-in existing streams (Maidment 1996). 

However, drainage network extraction results can vary substantially with these techniques and the methods generally 

require some manual intervention and/or tuning of parameters (Poppenga et al. 2013). Consequently, additional work is 

needed to streamline and further automate such methods for the various landscape conditions within the United States. 

Recent advances in machine learning techniques show promise for extracting water features from multispectral image 

data (Mishra and Prasad 2015, Yang et al. 2015, Yu et al. 2017). Chen et al. (2018) demonstrate high precision 

extraction of non-occluded waterbody features in urban areas.  The authors use image segmentation and a convolutional 

neural network (CNN) on HR satellite data (approximately 4 to 6 meter resolution) from the visible and near-infrared 

wavebands. However, limited machine learning research has been devoted to extracting surface water drainage 

channels in places where little, if any, water may exist, such as in the headwater drainage channel features, or for 

features that may be occluded by tree canopy.  

Here we present ongoing research to extract surface water features, focusing on drainage channels, using a CNN on 

data derived from lidar point-cloud and multiband image data. A primary dataset used in the CNN is the topographic 

position index (TPI). TPI is determined as the difference between a point elevation value and the local average 

elevation within a specific radius or within a surrounding window of cells (De Reu et al., 2013). The TPI exaggerates 

local lows and highs in a DEM relative to the nearby topographic features, and thus accentuates ridges and valleys.  

Roelens et al. (2018) demonstrate methods to extract connected drainage networks in an agricultural and residential 

area from 1-meter resolution DEM data derived from dense (16 points per square meter) lidar point-cloud data. In their 

work, initial drainage channels are extracted from a relative elevation dataset derived from the DEM, and then initial 

network segments are connected based on a connection probability model (Roelens et al. 2018). Relative elevation 

applied in that work is identical to TPI. Additional raster data layers that are being tested in the CNN include but are not 

limited to elevation, geometric curvature (Passalaqua et al. 2012), average lidar point intensity, and near-infrared 

reflectance from 1-meter resolution orthorectified color-infrared aerial photography furnished through National 

Agricultural Imagery Program.  

Given that CNN methods have been successfully applied to extract road features (Sameen and Pradhan 2017), CNN 

models are tested to simultaneously predict drainage line and road pixels, and non-stream, non-road (NSNR) pixels. 

Training window patterns for roads and drainage lines are respectively derived from Census road and HR National 
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Hydrography Dataset (NHD) flowline data that are available in the National Map. Road vectors for a study area are 

rasterized, and a set of road-pattern windows, each centered on a road pixel, is randomly sampled from the rasterized 

road dataset. A similar set of drainage-line-pattern windows is formed from drainage-line vector features. However, 

because NHD flowlines may not precisely follow drainage valleys in the HR DEM, a set of vector drainage lines that 

conform to DEM valleys is extracted from the HR DEM using Geonet flow-accumulation modelling software 

(Passalacqua et al. 2012). Drainage-line-pattern windows are formed from the DEM-extracted drainage lines that 

overlap with HR NHD flowlines and are therefore more likely to contain water than non-overlapping DEM-extracted 

lines. Each sample window is rotated multiple times to automatically form additional road and drainage-line patterns 

that may exist at different angles. 

Center pixels for NSNR pattern windows are randomly sampled from pixels outside of buffers created around the 

vector roads and DEM-extracted drainage lines. Likewise, each sampled NRNS-pattern is rotated the same number of 

times as the road and drainage-line windows to form additional patterns that may exist at different angles. Rotating 

pattern windows is a fast and easy way to expand the set of sample patterns for recognition of similar patterns with 

different orientations. However, given that methods automatically select samples, it may be better to select more sample 

patterns of features that actually exist, rather than forming rotated patterns for features that may or may not exist.  

All sample patterns for the three feature types (drains, roads, NSNR) are divided into three groups with equal numbers 

from each feature type. Two-thirds of the samples are used for CNN training. The remaining one-third is equally 

divided into two groups for validation and testing.   

Methods are currently being tested for two agricultural areas in Iowa and Illinois to compare solutions from 1 and 3 

meter resolution datasets. Aside from evaluating the different combinations of data layers and data layer resolution, 

several parameters (number of sample patterns, pattern window size, number of rotations of each pattern, buffer size 

around vector features for defining NSNR pixels) are being studied to identify an optimal solution. In addition, 

automated methods are being tested to subdivide the data into smaller data chunks for more efficient simultaneous 

processing of multiple CNN solutions, and these are being compared to a non-divided solution. The workflow is 

primarily implemented through Python programming and open source tools including Tensorflow
TM

 and Keras. 

Preliminary results for the Panther Creek agricultural watershed in central Iowa accurately predict better than 90 

percent of the test samples using a CNN applied to only the TPI data layer (Stanislawski et al. 2018). The CNN in this 

case used 6000 41x41-pixel window patterns for the sample set (2000 of each type) with 3-meter resolution data. It is 

noted that an effective filtering and vectorization process could further improve the solution. Additionally, methods are 

needed to validate predicted features that are not included in the sample data. This task will likely involve some manual 

interpretation of HR image or other data in conjunction with flow accumulation modelling. 

This research will develop and test fully automated workflows to update and, or validate hydrography and 

transportation features in the United States National Map using deep learning CNN modelling on existing National Map 

elevation and image data, and other readily available datasets. The workflow uses existing vector hydrography and road 

data to model and extract patterns for these features in the raster image and elevation datasets, or datasets derived 

therefrom. As relatively up-to-date lidar point-cloud and HR DEM data become available for all areas of the United 

States through 3DEP, pattern recognition and extraction workflows, as described here, may be an efficient alternative 

for maintaining current, accurate, and integrated data within the National Map.  
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