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Abstract: 

The authors have investigated into different geostatistical point data modeling approaches for regionalization purposes 

that employ the Artificial Neural Network (ANN) techniques. Regionalization is a spatially constrained adjacency 

classification problem. In this study, regionalization is viewed as classification of spatial objects (non-uniformly 

distributed points) into a smaller number of geographic regions defined by their spatial and attributive characteristics or 

regionalized variables. For regionalization, we take into consideration the non-stationarity and autocorrelation 

properties of the spatial data. 

The distinctive aspect of geostatistics is the use of the regionalized variables. Regionalized variables are in between the 

random variables and the completely deterministic variables. We assume that the spatial variation of the regionalized 

variables consists of the following components: 

 structural deterministic component – a constant mean or trend (𝜇(𝑠𝑖⃗⃗  )) that represents large scale variation,

 random, but spatially correlated stochastic component (𝜂(𝑠𝑖⃗⃗ )) that represents a zero-mean stationary process

for small scale variation,

 spatially uncorrelated, zero-mean white random noise (𝜀(𝑠𝑖⃗⃗ )) that consists of micro-scale variation and/or

measurement errors, uncorrelated with the 𝜂(𝑠𝑖⃗⃗ ). [after Oliver and Webster et al., 2015].

Random regionalized variables 𝑧(𝑠𝑖⃗⃗ ) at locations 𝑠𝑖⃗⃗  are described using the spatial component model such as 𝑧(𝑠𝑖⃗⃗ ) =
𝜇(𝑠𝑖⃗⃗ )  + 𝛿(𝑠𝑖⃗⃗  ), where 𝛿(𝑠𝑖⃗⃗ ) = 𝜂(𝑠𝑖⃗⃗  ) + 𝜀(𝑠𝑖⃗⃗ ) is a stochastic component, a zero-mean stationary process.

In the classical geostatistics, random regionalized variables are modeled by using kriging techniques such as ordinary, 

universal, co-kriging, trans-gaussian, indicator and disjunctive kriging, etc. The data 𝑧(𝑠𝑖⃗⃗ ) used in kriging are

observations of random variables 𝑍(𝑠𝑖⃗⃗ ) at locations 𝑠𝑖⃗⃗  in a study area 𝐷 that form a stochastic process {𝑍(𝑠𝑖⃗⃗ ) ∶
 𝑠𝑖⃗⃗   𝐷, 𝑖 =  1, 2, … }. The trend can be estimated using different methods such as: use of polynomials (universal

kriging); median polish kriging; intrinsic random function (IRF) kriging; the thin-plate spline [Berke, 1999] and the 

Multilayer Perceptron (MLP) network [Kanevski et al., 2008]. Normally, a random correlated stochastic component is 

predicted based on a valid semivariogram 𝛾 or covariogram function of the distance 𝑑 (directional dependence also can 

be introduced) between any two observable random spatial objects at the locations 𝑠𝑖⃗⃗  and 𝑠𝑖⃗⃗ + 𝑑 . A covariogram or a

semivariogram measures the structure of spatial dependence of a random process. 

In the classical model-based approach, generalized linear mixed model (GLMM) for an observable random variable 

𝑧 with the random effects 𝛿 is described as 

 𝑦 = 𝑔( 𝐸(𝑧 |𝜂)) = 𝑋𝛽 + 𝑍𝜂 +  𝜀, 𝑦 |𝜂 ∼ 𝐹, 

where 𝑦 is the linear predictor; 𝑔(. ) is the monotonic differentiable link function that states how the mean of 𝑧, 𝐸(𝑧) =
𝜇, is related to the linear predictor 𝑦; 𝑋 is a 𝑛 × 𝑝 matrix of the predictor variables (or covariates) for the fixed effects; 

𝛽 is a 𝑝 ×  1 parameter vector of the fixed effects (the first element is the intercept, if there is one); 𝑍𝜂 is a stochastic 

process capturing the spatial dependence; 𝑍 is a 𝑛 × 𝑟 design matrix for the random effects; 𝜂 is a 𝑟 × 1 vector of the 

random effects that are assumed to be normally distributed with the mean 0 and variance matrix 𝐺 such that 𝐸(𝜂) =
 0; 𝜀 is a vector of random noise (measurement errors for each observation) with variance matrix 𝑅 such that 𝐸(𝜀) = 0, 

and 𝑐𝑜𝑣 ((
𝜂
𝜀
)) =  𝜎2 (

𝐺 0
0 𝑅

); 𝜎2 is a positive constant; 𝐹 is the conditional target probability distribution; 𝑛 is the

number of complete cases in the dataset; 𝑝 is the number of the parameters in the model; 𝑟 is number of the random 

effects. In this model, 𝜂 and 𝜀 represent two Gaussian random terms with different correlation structures: 𝜂 values can 

be correlated among different observations, while 𝜀 is the residual error with independent values for each observation. 

If there are no random effects, the model is reduced to the generalized linear model 𝑦 = 𝑔( 𝐸(𝑧)) = 𝛽𝑋 +  𝜀, 𝑦 ∼ 𝐹. 

Inference can be done by likelihood-based methods or Bayesian methods. 
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In the model-based geostatistics, classical generalized linear mixed model (GLMM) is used to predict a random 

spatially correlated component 𝑍𝜂 by use of the variogram [Cressie, 1993, Diggle and Ribeiro, 2007, et al.]. That is the 

geostatistical innovation in the GLMM field.  

However, many applications of non-spatially adapted ANN (e.g., MLP) show that such ANN models substantially out-

perform the spatial GLMM. This is attributed to their greater capability for accurate approximation of any continuous 

and non-linear function. Nonparametric ANN models have many advantages over all linear models including GLMM. 

Feedforward networks learn pattern statistics from the training sets. The GLMM performs parametric estimation of the 

covariance structures. In ANN, the relationship between predictors and targets can be solved by using iterative data 

fitting via neural networks’ back-propagation. ANN training can be implemented with global or local-basis functions. 

In GLMM implementations, the number of monotonic differentiable link functions 𝑔(. ) is limited; in contrast, ANN 

may not require prior knowledge about the statistical distributions of the source variables or the assumptions on 

linearity. ANN works better with missing data that does not apply to the GLMM. 

There have been attempts to model the deterministic component with MLP, for example, Neural Network Residual 

Kriging [Kanevski et al., 2008], MLP for densification of training data points [Jia et al., 2018]. Shallow Radial Basis 

Function (RBF) network was used to incorporate spatial information into at three different layers of RBF [Hu and Sung, 

2005], and to construct Probabilistic Neural Networks (PNN)/General Regression Neural Network (GRNN) [Specht, 

1995]. It has been found that shallow learning (MLP, RBF) with only one hidden layer work better that GLMM. 

In this paper, we propose modeling the components of spatial variation of regionalized variables by using deep neural 

network (DNN) techniques. An efficient way to learn a complicated model is to combine a set of the network layers 

that are taught sequentially. We have investigated several DNN models for encoding the components of the random 

regionalized variables measured in irregularly distributed points. We applied two sets of models: (a) local filter-wised 

DNN models – Convolution Neural Networks (CNN) and Capsule Neural Network (CapsNet), and (b) hybrid learning 

models that combine different types of deep neural networks with Bayesian probabilistic approaches to model 

uncertainty. We trained the parameters CNN and CapsNet such as the number of filters, filter sizes and the architecture 

of the network will be capturing and encoding the trend and the local variations of the geostatistical point dataset 

separately. 

We trained the parameters CNN and CapsNet such as the number of filters, filter sizes and the architecture of the 

network with the purpose of separate capturing and encoding of separately the trend and the local variations of the 

geostatistical point dataset. 

First, we encoded the global trend of the variation of variables that describe a continuous phenomenon. Then the 

stochastic variations of the variables were encoded, taking into account the fact that the nearby local points are more 

strongly correlated than the more distant points. We demonstrated how the ANN techniques can be applied to explore 

the hierarchy in spatial patterns for the classification purposes. Performance of the tested ANNs have been evaluated. 

The proposed modeling approaches have been tested with the attribute-rich point dataset of the geological surveys in 

Ukraine. The study resulted in a series of maps outlining homogeneous regions of the primary environmental variables 

(factors), based on their relationships with the concentration of natural uranium in the groundwater. The regionalization 

of Ukraine by the concentration of uranium enables to determine the regions with different concentration of uranium in 

drinking water that do not meet quality standards, thus allowing for the better control of the problem. 
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