Classed or continuous rainbow color scheme? A case study with 2D and 3D permafrost visualizations

Izabela Gołębiowska^a, Luca Dall'Acqua^b, Jeannette Noetzli ^{b,c}, Arzu Cöltekin ^{d,*}

^aFaculty of Geography and Regional Studies, University of Warsaw - i.golebiowska@uw.edu.pl, ^bDepartment of Geography, University of Zurich - luca.dall@gmail.com, ^cWSL Institute for Snow and Avalanche Research SLF - jeannette.noetzli@slf.ch, ^dInstitute of Interactive Technologies, University of Applied Sciences and Arts Northwestern Switzerland - arzu.coltekin@fhnw.ch

Keywords: rainbow color, visualization, permafrost, color scheme discretization, 3D visualization

Abstract:

Rainbow color (RC) scheme is a controversial choice across various visualization interest groups (data and information visualization, scientific visualization or cartography). Approaching two decades now, there has been critical voices and evidence that spoke against the RC has been presented by various visualisation communities (Borland & Taylor 2007, Silva et al. 2011) e.g., due to multiple limitations in communicating the quantitative data, such as the lack of intuitive order of hues (Gołębiowska & Çöltekin 2022a) or creating false boundaries through implicit discretization (Quinan et al., 2019). On the other hand, empirical studies evaluating the RC showed that it can support selected task types in some contexts (Ware et al. 2023), e.g., reading values from the body of the visualization with a use of a legend works well (Gołębiowska & Çöltekin 2022b). This is possibly because of clear discriminability and nameability of hues that support distinguishing categories (Hanley 2016). Interestingly, many user studies concerning the RC have been conducted with the use of a continuous representation of the rainbow colors, possibly due to software defaults which present a continuous RC palette as one of the prominent options (Gołębiowska & Cöltekin 2022a). Classed (also referred to as 'banded') version of the RC appears most often with statistical / thematic maps, and thus it appears to have been tested mainly in the context of cartography (Gołębiowska & Çöltekin 2022b). The effect of introducing banding in quantitative color schemes has been investigated also in other domains, even though this is seldom (Padilla et al. 2017, Ware 2024). Padialla et al. (2017) and Ware (2024) show that the effects of binning might be moderated by additional factors such as the task type or variation in hues, and these factors need to be taken into consideration while formulating conclusions and recommendations. Another factor of potentially important effect on the user performance is the use of spatial dimensions. Precisely exploring these interactions in a scientific visualization context, Borkin et al. (2011) demonstrated that 2D dendrogram visualizations of arteries led to faster and more accurate disease diagnosis and anomaly detection than using 3D visualizations, and using sequential colors yielded much better results than the rainbow colors for this purpose. Essentially, Borkin et al. (2011) paper suggests that using 2D representation with sequential colors should yield higher accuracy in capturing the patterns and anomalies in the data than other combinations (i.e., 2D+rainbow, 3D+sequential, 3D+rainbow).

Given the hypothesis above, we conducted a user study evaluating the effect of rainbow color scheme classification and its interactions with dimensionality (2D vs. 3D representations) in a new context, i.e., visualization of quantitative observations about underground permafrost. The task types were limited to reading values (involving a single value, and involving a series of values) because this task type has been shown to be supported well by the RC. Based on opinions collected from 20 experts in the first phase, we selected three visualization types: 2D, 3D and 'geographic context' (briefly referred to as Context) to test comparing classed vs. continuous rainbow colors (Fig. 1).

To compare the effect of introducing banding (continuous vs. classed) and the dimensionality (2D, 3D, Context) as presented in Fig. 1, we conducted a within-subjects user study with N=184 participants. The outcomes of the study show that, overall, a classed color scheme supports user performance better in terms of response accuracy, response time and user satisfaction for all but one task, i.e., with continuous colors, 2D visualization better supports user performance in reading a single value than 3D. However, interestingly, introducing classes in the tested rainbow color scheme eliminates this difference: 2D and 3D visualizations with a classed rainbow color scheme supports users performance similarly. While it is understood that rainbow colors are not ideal when order needs to be inferred from visualizations, and 3D can hurt user performance (Çöltekin et al., 2016), our results suggest that there is a lesser-known interplay between design decisions regarding the color schemes and dimensionality. In addition, we see that changing implicit banding observed in rainbow colors (Quinan et al. 2029) into an explicit one through classed color scheme the rainbow color scheme where class boundaries limit the search space can better support users. We detail this study further in a recent publication (Gołębiowska et al. 2025).

^{*} Corresponding author

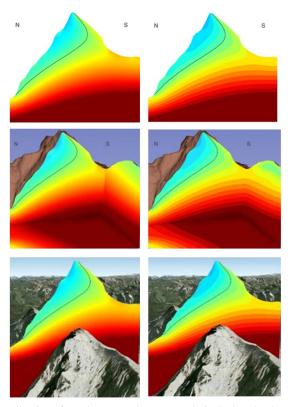


Figure 1. Tested permafrost visualizations featuring Zugspitze mountain in Switzerland (Data source: Noetzli et al., 2010, Gallemann et al., 2017): Continuous (left column) and Classed (right column) of 2D (top), 3D (middle) and Context (bottom).

References

Borland, D., & Taylor, R. M., 2007. Rainbow color map (still) considered harmful. *IEEE Computer Graphics and Applications*, Vol. 27, No. 2, pp. 14–17.

Borkin, M. A., Gajos, K. Z., Peters, A., Mitsouras, D., Melchionna, S., Rybicki, F. J., Feldman, C. L., & Pfister, H., 2011. Evaluation of artery visualizations for heart disease diagnosis. *IEEE Transactions on Visualization and Computer Graphics*, Vol. 17, No. 12, pp. 2479–2488.

Çöltekin, A., Lokka, I.-E., & Zahner, M. (2016). On the usability and usefulness of 3D (geo)visualizations -- A focus on virtual reality environments. In *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*. Prague. XLI-B2, pp. 387–392.

Gołębiowska, I., Dall' Acqua, L., Noetzli, J., & Çöltekin, A., 2025. Turning implicit into explicit: does it matter if the rainbow color schemes are continuous or discrete? A case study with 2D and 3D permafrost visualizations. *Cartography and Geographic Information Science*, pp. 1–20. https://doi.org/10.1080/15230406.2025.2467316

Gołębiowska, I.M., and Çöltekin A., 2022a. Rainbow Dash: Intuitiveness, Interpretability and Memorability of the Rainbow Color Scheme in Visualization. IEEE Transactions on Visualization and Computer Graphics, Vol. 28, No.7, pp. 2722–2733.

Gołębiowska, I., and Çöltekin A., 2022b. What's Wrong with the Rainbow? An Interdisciplinary Review of Empirical Evidence for and against the Rainbow Color Scheme in Visualizations. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 194, No. 12, pp. 195–208.

Hanley, J. R., 2016. Color Categorical Perception. In: *Encyclopedia of Color Science and Technology*, Springer New York, pp. 239–243.

Padilla, L., Quinan, P. S., Meyer, M., & Creem-Regehr, S. H., 2017. Evaluating the Impact of Binning 2D Scalar Fields. *IEEE Transactions on Visualization and Computer Graphics*, Vol. 23, No. 1, pp. 431–440.

Quinan, P. S., Padilla, L. M., Creem-Regehr, S. H., & Meyer, M., 2019. Examining implicit discretization in spectral schemes. *Computer Graphics Forum*, Vol. 38, No. 3, pp. 363–374.

Silva, S., Sousa Santos, B., & Madeira, J., 2011. Using color in visualization: A survey. *Computers and Graphics (Pergamon)*, Vol. 35, No. 2, pp. 320–333.

Ware, C. 2024. Colormaps for Shaded Surfaces: Stepped vs Smooth. *IEEE Transactions on Visualization and Computer Graphics*, pp. 1–6.