
1. The illustration is adapted based on the figure from https://jalammar.github.io/illustrated-transformer/ under CC BY-NC-SA 4.0.
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Abstract: 
Generalization of building maps is a classic task in cartography, which aims at generating smaller-scale representations 
from large-scale spatial data. Simplification is one of the most frequent operators that poses interesting challenges to be 
automated. In recent years, deep learning models have been introduced into the research of cartographic generalization. 
Instead of defining complicated rules and many thresholds, the learning-based approach is more flexible and can reduce 
the interplay when applying different operators, while exploiting the rich amount of training data from existing map series. 
Sester et al. (2018) proposed to apply conventional deep convolutional neural networks for image segmentation on 
rasterized building footprints to generalize building shapes. Feng et al. (2019) further experimented with different network 
architectures and showed that the models could achieve the expected generalization effects, however, they could not 
preserve linear boundaries and right angles very well. Courtial et al. (2022) applied similar models on road maps. Still, 
road connectivity is a major challenge for raster-based approaches.  

Vector-based deep learning is thus more desirable. GCN (Graph neural networks) has already been studied a lot with 
purposes such as shape recognition and encoding (Yan et al., 2021). More recently, Zhou et al. (2022) have used the GCN 
to predict the actions needed at each building vertex, including the binary decision of remove, and the translation with an 
(x, y) offset. However, the experimental results showed that it often does not always present desired simplification actions 
as expected. 

Figure 1. Illustration of the Transformer proposed in this work (right) in comparison with the network for sentence translation (left)1. 

Therefore, in this work, instead of using a graph to encode the polygon, we regarded the polygon as a data sequence and 
try to learn this simplification process with a transformer network. The transformer model is a neural network architecture 
that was initially designed for natural language processing (NLP) tasks. The self-attention mechanism has been applied, 
which processes the entire input at once, and each node receives the context information of the entire sequence. Therefore, 
it is ideally suited for GIS vector data. Simply borrowing these ideas, we aim to “translate” the building vectors from one 
map scale to another, e.g., from 1:10,000 to 1:25,000 in this work. The data from Feng et al. (2019) is used for learning 
this model.  

In sentence translation, the semantics of the words can be captured by word embedding techniques. However, this does 
not exist naturally for the GIS vector data. Therefore, at the input stage of the network, 1D convolution with residual 
connections has been applied for the sequences of (x,y) coordinates. A second difference to the conventional transformer 
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is that in the prediction step, an iterative process is deployed to predict the next word based on the previous words. 
However, very short, and not closed polygon segments worsen the result. Therefore, the encoded feature maps are directly 
decoded with the entire sequence as output. The model uses L1 loss to optimize the Euclidean distance between the target 
and predicted vertices. 

A polygon can be represented with two strategies. The first is the varying-length strategy: A sequence of coordinates is 
used as input, and the distances between successive vertices can be arbitrarily long. The input sequences need to be zero-
padded to the same number of points (i.e., 64 points) in order to be fed into the network. A one-hot encoded binary column 
is attached to the input sequence indicating the number of points, which needs to be learned with an extra binary cross-
entropy term in the loss function (examples for strategy 1 are given in Figure 2 left red column). With this, the model also 
predicts the number of vertices of the output polygon in addition to the coordinates. The second strategy is the fixed-
length strategy. It resamples the polygon of the different numbers of vertices into the same number of points, i.e., 64 
points. Successive vertices have similar distances (examples in Figure 2 – right red column). Figure 2 presents several 
preliminary results of the two strategies, where the simplification outputs are compared qualitatively.  

   

  

    
Figure 2. Qualitative comparison between models using the varying-length strategy (left 3 columns) and the fixed-length strategy 
(right 3 columns). The input polygons are in red, the target polygons are in green, and the predicted outputs are in blue. The vertex 

ids are placed on the right of each vertex. 

The initial results show that both strategies are able to reconstruct simplified shapes as closed vectors. In general, the first 
strategy can provide more realistic building simplification results. However, the original positions of the vertices are often 
not precisely recovered for the cases using the first strategy. In this case, post-processing based on Least Squares 
Adjustment could be applied, which optimally adapts the simplified model to the original one (Sester, 2005). Nevertheless, 
it shows that the model is able to capture the simplification operation of the building shapes in most cases. 
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