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Abstract: 

Traditionally, map generalization is a vector-based process which is based on the implementation of various geometric 
operators utilized to produce geospatial data from a larger to a smaller map scale. Among the existing approaches to 
map generalization, line simplification constitutes a filtering process which selects the critical points to be transferred 
from the initial to the generalized cartographic line (Jiang and Nakos, 2003). Over the last decades, well-established 
algorithms for line simplification have been incorporated into both commercial and open-source GIS software, 
substantially supporting the process of cartographic production in different types of map agencies. However, 
considering that map generalization refers to a graphical problem and that it is difficult to model the cartographer’s 
decisions during the generalization of a cartographic product (Touya et al., 2019), the application of deep learning 
techniques seems to be quite promising for the existing need to provide automated map generalization processes (Zhang 
et al., 2024). Indeed, deep learning techniques have been applied for the generalization of relief shading, contour lines, 
coastlines (e.g., Jenny et al., 2022), buildings (e.g., Sester et al., 2018), as well as map tiles (Courtial et al., 2024).  

In the present study, we present a deep neural network approach towards cartographic line generalization. In particular, 
we use vector coastline data at different scales, adapted from Eurostat (European Commission). The vector data are 
properly transformed into raster in order to generate a concrete dataset for training the neural network. The input of the 
neural network consists of raster image samples originating from a larger scale (initial lines) while the output contains 
the corresponding samples in a smaller scale (generalized lines). Specifically, for each vertex of the larger scale, a raster 
image sample is generated in both the larger and smaller scales using a window of user-defined dimensions centered on 
the vertex. In this way, a training sample pair is created for each vertex, where the input and the desired response are 
given by the corresponding images. The training data may be further augmented by geometric transformations such as 
rotation and reflection. For example, a 1:1 million map under consideration provides 12K sample images that raise up 
to 100K when augmentation is applied. This process results in a large amount of training data which serves as input to 
train a U-Net deep neural network. Such networks are known to perform well on image-to-image problems 
(Ronneberger et al., 2015; Feng et al., 2019). The proposed U-Net architecture consists of 57 layers and a total of 31M 
learnable parameters. 

During evaluation a test vector map at a larger scale undergoes the described workflow of generating raster samples that 
feed the network in order to extract the corresponding smaller scale raster samples. These individual samples are fused 
in a post-processing step where only the statistically most probable pixels are selected in order to construct the final 
generalized map. Specifically, a percentage threshold is applied to the cumulative density distribution of pixel 
intensities. Figure 1 depicts the basic steps of the evaluation process in an example area (all images are shown color 
inverted for visualization purposes). Both input and output raster samples are indicated by blue squares. The network’s 
predictions are spatially fused and pixels with statistically higher contribution are isolated in order to produce the final 
output image map. The proposed method has been tested in various combinations of three different map scales, 
including 1:1 million, 1:3 million, and 1:10 million. As shown in the top row of Figure 1, in case of samples positioned 
on the vertices of the input larger scale map the proposed method achieves an average boundary F-measure (Csurka et 
al., 2013) of 94%. The experimental results indicate that the generalization efficiency is higher in areas where the 
output samples are dense. The bottom row of Figure 1 depicts an alternative approach where (non-empty) samples are 
generated in a grid-based mode. Covering the examined area with samples characterized by uniform spatial distribution 
leads to an even higher value of the boundary F-measure (~97%). Future work includes the further investigation of 
alternative sample positioning strategies using specialized tools (e.g., Kesidis et al., 2022). 
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Figure 1. Example of 1:1 million to 1:3 million scale generalization. The top and bottom row demonstrate a vertex-based and grid-
based approach, respectively, for the generation of sample images. 
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