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Abstract:

Building footprint simplification is crucial for various applications in urban planning, mapping, and navigation. With
recent advances in deep neural networks, this task has often been addressed in research in the image domain with convo-
lutional neural networks (CNN) or in the vector domain using graph neural networks (GNN). For the latter, hand-crafted
geometric features are typically computed for the points of the building footprint polygon (e.g. line segment lengths,
triangle areas, angles, etc.) and used as input to the neural network instead of the point coordinates. However, this does
not reflect the notion of deep learning, in which feature extraction is performed by the neural network itself. In this study,
we employ the graph convolutional networks (GCNs) approach proposed by Zhou et al. (2023), and add a multilayer
perceptron (MLP) module at the beginning of the neural network that performs a feature extraction directly on the point
coordinates (see Figure 1). We show that this approach is able to learn the relevant features for the task of cartographic
simplification of building footprints, and that the network performs on par with using pre-computed features.
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Figure 1. GCN architecture with (adapted) pre-computed features as input (dashed box) following Zhou et al. (2023), and
with the proposed MLP based feature extraction module (gray box).

To study the benefits of such an approach we implemented two models: The first one represents a minor adaptation of the
original model introduced by Zhou et al. (2023). The second introduces our new parametrization of inputs and the MLP
module for feature extraction (see Figure 1). For both models, the primary objective is to determine whether a vertex
should be kept, removed or moved, and for the moved vertices by how much they are moved along the two incident edges.
Note that contrary to Zhou et al. (2023), we move a vertex either along the preceding or the succeeding edge (and not
along both), and therefore have two move classes (instead of one) and one measure of move distance.
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In the GCN baseline model adapted from Zhou et al. (2023), the network is supplied with input features derived from
the geometric attributes of incident edges. For each vertex, these features encompass three parameters: the lengths of the
preceding and succeeding edges, denoted as /; and /;_1, respectively, and the signed angle between these edges, denoted
as A;. We do not use the angle direction as in the original work.

In contrast, for the GCN model with the MLP feature extraction, input features for each vertex i are directly formulated
using its spatial coordinates, X; = (x;,y;), as well as the spatial coordinates of its preceding and succeeding vertices,
denoted as x;-1 and x; 1, respectively. These coordinates are then centered around x;, resulting in X;-1 = (X;-1 —X;,Vi-1 —i)»
%; = (0,0), and X;1 = (x;+1 — x;,vi+1 — ¥i). Notably, as X; = (0,0) for each vertex i, we do not regard this quantity as
important anymore and it is excluded from the input features, resulting in an input vector X of dimension N = N,, x 4 for
a building footprint containing N, vertices. The presented input tensor is then not directly fed into the GCN, but first goes
through a three layer MLP module.

As in the study of Zhou et al. (2023), we employed the dataset from Feng et al. (2019), specifically focusing on building
footprints in the Stuttgart region. We also chose a scale of 1 : 5000 for the source map and 1 : 10000 for the target map. We
restricted our analysis to footprints comprising a minimum of 5 vertices, resulting in a dataset containing 25185 footprints.
Subsequently, this dataset was partitioned into training, evaluation, and testing sets, in the proportions 8:1:1.

The outcomes of the vertex classification part are presented in Table 1, showcasing the prediction accuracy attained on the
test set. Overall, the GCN model with MLP feature extraction demonstrates marginally superior predictive performance,
particularly concerning vertices needing displacement.

GCN model with Keep | Move along preceding edge | Move along succeeding edge | Remove
hand-crafted features | 96.5% 76.7% 78.4% 95.3%
MLP features 97% 82.8% 81.7% 96.9%

Table 1. Accuracy of vertex classification predictions.

To evaluate the fidelity of predicted outcomes against actual targets within the test set, two comparison metrics were
computed: the Intersection over Union (IoU), expressed as a percentage, and the Hausdorff distance (HD), measured in
meters. Statistical summaries of these metrics are provided in Table 2. While the minimum, maximum, and median values
of IoU and HD exhibit close proximity between both models, discernible disparities emerge in their mean values. This
suggests that, on average, the GCN model with MLP feature extraction generates more precise predictions.

ToU (%) HD (m)
GCN model with Min | Max | Mean | Median | Min | Max | Mean | Median
hand-crafted features | 0.318 1 0.978 | 0.996 | 0.003 | 47.9 | 0.601 0.058
MLP features 0.367 1 0984 | 0.997 | 0.003 | 47.9 | 0.461 | 0.059

Table 2. Similarity metrics between predicted and real target building footprints.
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Figure 2. Examples of simplified building footprints using the MLP feature extraction module with input (red), ground
truth (green), and predicted target (blue) footprints, respectively.

This study shows that an MLP is capable of extracting features directly from vector coordinates for the simplification of
building footprints using a GCN. The findings suggest that the approach can also be used to extract effective features from
coordinates for other tasks related to 2D vector geodata using neural networks without relying on hand-crafted features.
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