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Introduction: From its inception, Visual Analytics has been defined as the use of visual interfaces to computational 

methods in support of sophisticated human reasoning (Thomas et al., 2005). Implicit in this definition is an intentional 

and productive synergy between humans and machines: computers are tools that help humans reason with data, 

particularly when the volume, velocity, variety, and veracity of this data exceed the cognitive limits of humans 

(Robinson et al., 2017).  In this way, the machine scales the human to meet the complexity of the problem at hand (Roth 

& MacEachren, 2016). Fast-forward twenty years, and discussion within Cartography and Geoscience about what could 

have been Geovisual Analytics arguably has slipped towards computational automation for tasks from the sensitive to 

the mundane due to discriminative and generative artificial intelligence (see Kang et al., 2024 for our recent review). 

The “moonshot question” around this emergent research thrust of GeoAI is how to fully automate geospatial processing 

including data collection, analysis, presentation, and decision making (Janowicz et al., 2020). In other words, one 

interpretation of GeoAI is the elimination of the visual, the interface, and the human from the original definition of 

Visual Analytics to privilege the computational. In this position paper, I reframe Visual Analytics as a bridge between 

Cartography and GeoAI by extending a Geovisualization framework on modes of human-centered analytical reasoning 

developed by Gahegan (2005) to consider emergent possibilities with discriminative and generative AI. 

Background: Broadly defined, analytical reasoning describes the cognitive processes for building explanations from 

information (Robinson, 2017). In Psychology and Cognitive Science, reasoning is treated as the culminating suite of 

cognitive faculties that apply human judgement to construct knowledge from current (learning) and past (remembering) 

experiences (MacEachren, 1995). For Visual Analytics, analytical reasoning has a specific of connotation of building 

actionable knowledge to inform, for instance, collaborative deliberation and decision making (Andrienko et al., 2007). 

Construction of actionable knowledge follows an iterative sensemaking process of collecting data-driven evidence 

related to a given problem, making assumptions and inferences about patterns within the evidence to establish potential 

pathways of action, and weighting new evidence against previous inferences to evaluate and change actions (Pirolli & 

Card, 2005). Visual representations like maps are important for supporting sensemaking, as vision affords the greatest 

sensory bandwidth to the human brain, enabling reasoning to be offloaded onto visuals or onto computational processes 

made available through visual interfaces (Hollan et al., 2000). AI arguably mirrors this sensemaking process with 

training data that exceeds the capacity of human reasoning―a 

promise similar to the initial proposal for Visual Analytics―but 

this “artificial reasoning” is made invisible within the “black box” 

of proprietary discriminative and generative AI algorithms (Ricker, 

2017). Accordingly, humans employing AI either have difficulty in 

understanding how to incorporate the AI output into their own 

reasoning processes to inform action, or simply must trust the 

results of AI, giving up their individual agency in favor of 

mindlessly acting on behalf of the machine (Prestby, 2023). 

Framework: Notably, the sensemaking process crosses different 

modes of reasoning, and a potentially viable pathway forward is 

calibrating AI to support a specific mode within the process, rather 

than overtaking the reasoning process altogether. Gahegan (2005) 

identified five unique modes of reasoning that have different 

resulting analytical products (Figure 1). In the following, I offer 

brief thoughts on how Visual Analytics might bridge Cartography 

and GeoAI for each modality to seed workshop discussion on 

human reasoning in the moment of emergent AI.  

Figure 1. Modes of Reasoning and Analytical Products 
(after Gahegan, 2005) combined with the DiBiase 
(1990) and MacEachren (1994) Stages of Science. 
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1. Abduction infers a preliminary explanation from limited evidence. Abduction is the primary mode of 

reasoning employed by Exploratory Data Analysis (Tukey, 1980), and therefore is the conceptual basis for 

sensemaking within Exploratory Geovisualization (MacEachren, 1994). The analytical product of abduction is 

a hypothesis, or proposed explanation for a phenomenon that can be confirmed or refuted through subsequent 

evidence, which often is restated in practice as a hunch worthy of follow-up investigation (Roth et al., 2015). 

Accordingly, GeoAI can be used to suggest and generate alternative visual isomorphs, or different visual 

structures of the same information, which might include different map types or map designs, or different kinds 

of non-map visualizations altogether. Each newly generated visual isomorph may lead to a spontaneous new 

insight for follow-up analysis. 

2. Induction infers a general explanation from comprehensive evidence. The analytical product of induction is a 

theory, or general explanation yet to be disproven by counter evidence, which often in practice is a less robust 

conjecture suggesting a generally helpful expectation or guideline but less scientifically robust than a theory. 

For Cartography and GIScience, induction is related to the “confirmation” or “analysis” stage of science 

(DiBiase, 1990), and therefore can be supported with GeoAI through the automation and evaluation of 

complex spatial analysis techniques that supply a measure of statistical significance. Notably, induction can be 

made actionable through an analysis of competing hypotheses, or the processing of weighting specific evidence 

against alternative explanations. Accordingly, GeoAI may be used to produce alternative simulations, linked 

with Visual Analytics through a sandtable interface supporting user-directed inspection of alternative 

scenarios. 

3. Deduction infers a pattern of a single instance from an unrefuted general explanation. Notably, deductive 

reasoning follows the scientific method to “corroborate” theory. Deductive reasoning for Cartography aligns 

with verifiable visualization, and GeoAI can be used to evaluate the potential for Type I (seeing wrong) and, in 

particular, Type II (not seeing) map reading errors that may be meaningful in statistical or historical space but 

less visually obvious because of the volume of mapped data (MacEachren, 1995). The analytical product of 

deduction can be (although does not need to be) a model that combines multiple general explanations into a 

complex system for predicting unknown or future observations. Accordingly, the deductive mode of reasoning 

relates to the “synthesis” stage of science underdeveloped in Cartography and Visual Analytics (Robinson, 

2008). Discriminative and generative AI can help with this synthesis projects, finding observations and 

patterns similar to those identified visually to further corroborate a general explanation. 

4. Model-based reasoning infers from a trained model the most likely of several possible explanations. 

Gahegan’s (2005) addition of model-based reasoning today most closely matches the implementation of 

GeoAI, and “fourth paradigm” data-driven scientific discovery broadly. The analytical product of model-based 

reasoning—and really the entire analytical process up to this point—is a conclusion, or actionable explanation 

of past, current, and future observations. GeoAI as computational techniques for automation arguably replaces 

human-centric abduction, induction, and deduction with model-based conclusions, and therefore has pitfalls 

with transparency and trust listed above. However, model-based reasoning does not need to be a black-box, as 

users can steer models through visual interfaces, amplifying interesting model outcomes and recalibrating 

model parameters when suboptimal results are returned. 

5. Rhetoric employs persuasive discourse to argue for a given conclusion. To Gahegan (2005), the analytical 

product of rhetoric is a conventional map used for the “presentation” stage of science and visual 

communication, and thus efforts to automate cartographic design through GeoAI align most closely here. 

Rather than just generating a single map, however, GeoAI can be used to generate alternative rhetorical 

framings about a visual conclusion, such as different geographic locations, intersectional identities, political 

ideologies, and other individual differences to the end of considering the conclusion from multiple perspectives 

beyond one’s own. GeoAI also can help retain analytical provenance about the reasoning process from 

exploration to presentation, enabling numerous loops through the sensemaking process, as well as support 

automated reporting about the analytic process for collaboration. 

Outlook: In this position paper, I argue that Visual Analytics can serve as a bridge between Cartography and GeoAI to 

support sophisticated, human-centered reasoning. Rather than handing over reasoning to machines―and thus our 

capacity to reason about and act on complex geographic problems―Visual Analytics provides a potential common 

ground to refocus discriminative and generative AI as a tool for supporting rather than automating Cartography. The 

updated Gahegan (2005) framework offers a useful, albeit preliminary foundation for understanding what outcomes we 

are seeking from GeoAI through different modes of reasoning as well as for brainstorming new visual interfaces to 

computational methods to support analytical reasoning with GeoAI.  
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