

User Experience with Geodashboards Visualizing Preparedness and Response to Natural Hazards

Izabela Gołębiewska^{a,*}, Tomasz Opach^{a, b}, Arzu Çöltekin^c

^a University of Warsaw, Faculty of Geography and Regional Studies, Poland, Izabela Gołębiewska - i.golebiowska@uw.edu.pl; Tomasz Opach - topach@uw.edu.pl

^b Norwegian University of Science and Technology, Faculty of Social and Educational Sciences, Tomasz Opach - topach@uw.edu.pl

^c University of Applied Sciences and Arts Northwestern Switzerland, School of Engineering, Institute of Interactive Technologies, Switzerland, Arzu Çöltekin - arzu.coltekin@fhnw.ch

* Corresponding author

Keywords: geovisualization, geodashboard, eye tracking, user study

Abstract:

Management of natural hazards and associated risks requires access to multivariate information. Access to rich spatiotemporal data that contains information on all aspects of the hazardous event—e.g., factors that led to the event, what was affected by the event, impact of any previous (or planned) interventions—should support proper understanding as well as informed decision making for current and future actions (Gołębiewska et al., 2023). However, studying multiple variables and the interactions between them is cognitively demanding, and when it is not done right, it can impair human comprehension and decision making rather than improving it (Keskin et al., 2023; Cheng et al., 2024). In this context, we examine geodashboards that contain multiple linked visualizations (Figure 1), which offer opportunities for exploration and communication of spatiotemporal data from many perspectives through, e.g. maps, plots, graphs, spreadsheets, networks etc. (Golebiowska et al., 2017, 2020), though their complexity could lead to high levels of cognitive load (Nadj et al., 2020).

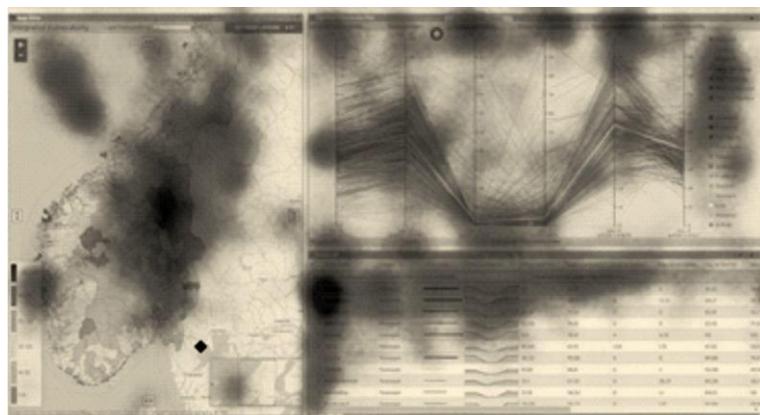


Fig. 1. Tested geodashboard with an overlaid heatmap showing average fixation times of study participants while learning the tool

We conducted several user experiments where participants are given natural hazard related sense making and decision making tasks with such complex dashboards as described above, and measure their performance as well as eye movements, from which we can surmise their cognitive load to some degree (Ke et al., 2023). Specifically, we investigated user experience and layout design related challenges; *i.e.*, inexperienced participants' process while learning the complex interface, their process of information retrieval from multiple-view tools, and the effect of different layouts of geodashboards (Figure 2). We asked participants a set of questions referring to different task types, e.g. reading value, localization, comparing, and detecting anomalies.

Fig. 2. Two layouts tested with users with different designs of explanatory elements

Combining usability performance metrics (efficiency, effectiveness and satisfaction), and eye tracking data (Çöltekin et al., 2009), we get insights into the users' reasoning and cognitive processes. The tested geovisualizations present data on preparedness, *i.e.*, vulnerability and exposure to natural hazards (floods, landslides, storms), as well as consequences of natural hazards in a form of insurance compensations due to natural hazards (storms, floods, landslides, storm surge, water intrusion). Participants were asked to carry out various task types using the presented geovisualization tools. Our results broadly suggest that despite the visual complexity of the tools, even the inexperienced participants find them convenient and helpful in exploring large sets of spatio-temporal data. We thus posit that properly designed geodashboards can be effective tools supporting users, enabling them access to complex data.

Acknowledgements

The tools have been developed within the KLIMAFORSK program [235490] and the project funded by the Norwegian Research Council [235490]. The empirical investigations have been supported by the Research Council of Norway within the YGGDRASIL funding scheme [227305/F11] and by the National Science Centre, Poland [UMO-2018/31/D/HS6/02770].

References

Cheng, N., Zhao, W., Xu, X., Liu, H., & Tao, J. (2024). The influence of learning analytics dashboard information design on cognitive load and performance. *Education and Information Technologies*, 1-24.

Çöltekin, A., Heil, B., Garlandini, S., & Fabrikant, S. I. (2009). Evaluating the effectiveness of interactive map interface designs: a case study integrating usability metrics with eye-movement analysis. *Cartography and Geographic Information Science*, 36(1), 5-17.

Gołębowska, I., Opach, T., Çöltekin, A., Korycka-Skorupa, J., Ketil Rød, J. (2023). Legends of the dashboard: An empirical evaluation of split and joint layout designs for geovisual analytics interfaces. *International Journal of Digital Earth* 16(1), 1395-1417. Open access. DOI: <https://doi.org/10.1080/17538947.2023.2197262>

Golebiowska, I., Opach, T., & Rød, J. K. (2020). Breaking the Eyes: How Do Users Get Started with a Coordinated and Multiple View Geovisualization Tool? *The Cartographic Journal*, 57(3), 235–248. Open access. DOI: <https://doi.org/10.1080/00087041.2019.1660513>

Golebiowska, I., Opach, T., & Rød, J. K. (2017). For your eyes only? Evaluating a coordinated and multiple views tool with a map, a parallel coordinated plot and a table using an eye-tracking approach. *International Journal of Geographical Information Science*, 31(2), 237-252.

Nadj, M., Maedche, A., & Schieder, C. (2020). The effect of interactive analytical dashboard features on situation awareness and task performance. *Decision support systems*, 135, 113322.

Keskin, M., Krassanakis, V., & Çöltekin, A. (2023). Visual Attention and Recognition Differences Based on Expertise in a Map Reading and Memorability Study. *ISPRS International Journal of Geo-Information*, 12(1), 21.

Ke, J., Liao, P., Li, J., & Luo, X. (2023). Effect of information load and cognitive style on cognitive load of visualized dashboards for construction-related activities. *Automation in Construction*, 154, 105029.